
Appendix B 
 

PROPERTY MODELS 

 
B.1 Thermodynamic Models 

 
REFPROP calculates the thermodynamic properties using 
comprehensive equations of state. This approach ensures 
thermodynamic consistency and allows calculations at all 
conditions. Other approaches, such as the combination of a vapor-
phase model with vapor pressure and liquid density equations may 
not be applicable in the compressed liquid and supercritical regions 
and do not always give reliable results for derived properties such 
as heat capacity and speed of sound. 
 
B.1.1 Pure fluid equations of state 

 
Three models are used for the thermodynamic properties of 
pure components, depending on the availability of data. The first 
is the modified Benedict-Webb-Rubin (MBWR) equation of 
state. This model was first proposed by Jacobsen and Stewart 
(1973) and has been applied to a wide variety of fluids, 
including hydrocarbons, cryogenic fluids, and refrigerants. It is 
capable of accurately representing the properties of a fluid over 
wide ranges of temperature, pressure, and density. The MBWR 
equation is the basis for the current international standard for 
the properties of R123 (Younglove and McLinden, 1994). 
 
The MBWR equation expresses pressure as an explicit function 
of temperature and molar density and is of the form, 
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where the ai are simple functions of temperature resulting in a 
total of 32 adjustable parameters. For a complete description of 
the energy quantities (enthalpy, entropy, etc.), the MBWR 
equation is combined with an expression for the molar heat 
capacity of the ideal-gas state, that is, vapor in the limit of zero 
pressure. A form combining polynomial and theoretical terms is 
used: 
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All of the thermodynamic properties can be computed from Eqs. 
(1–3), as detailed by Younglove and McLinden (1994). 
 

The second high-accuracy pure-fluid equation of state is 
expressed in terms of reduced molar Helmholtz free energy: 
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where the first two terms on the right side of Eq. (4) constitute 
the ideal-gas contribution aid. They are analogous to the 
combination of the a1 term in the MBWR equation of state (a1 = 
RT) and the ideal-gas heat capacity (Eqs. 2 and 3). The second 
summation is the residual, or real-fluid, contribution ar. The 
temperature and density are expressed in the dimensionless 
variables � = T*/T and � = �/�*, where T* and �* are reducing 
parameters which are often, but not always, equal to the critical 
parameters. The �i and �k are numerical coefficients fitted to 
experimental data, and the exponents ti, tk, and dk are typically 
determined by a selection algorithm starting with a large bank of 
terms. The parameter � is equal to 



0 for terms with lk = 0; it is equal to 1 for terms with lk � 0. This 
“Helmholtz-energy model” is the basis for the international 
standard formulation for R134a (Tillner-Roth and Baehr, 1994). 
 
This model is sometimes termed the “fundamental equation” 
because it gives a complete description of the thermodynamic 
properties, as discussed by Tillner-Roth and Baehr (1994), but 
the MBWR equation of state combined with a Cp

id equation is 
entirely equivalent. The accuracies of these formulations vary, 
but those for R123 are typical: experimental data are 
reproduced with average absolute deviations of 0.04% for 
densities, 0.05% for vapor pressures, and 0.75% for heat 
capacities. 
 
The third pure-fluid model is the extended corresponding states 
(ECS) model of Huber and Ely (1994). It is used for fluids with 
limited experimental data. Simple corresponding states is based 
on the assumption that different fluids obey, in reduced 
coordinates, the same intermolecular force law. This 
assumption leads to the conclusion that, with the appropriate 
scaling of temperature and density, the reduced residual 
Helmholtz energies and compressibilities (Z=p/RT�) of the 
unknown fluid “j” and a reference fluid “0” (for which an 
accurate, wide-ranging ble) are equal:   equation of state is availa
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When combined with an expression for the ideal gas heat 
capacity (such as Eqs. 2 and 3), all other thermodynamic 
properties can be calculated. The reference fluid is evaluated at 
a “conformal” temperature and density: 
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where the multipliers 1/fj and hj are termed reducing ratios. 
Simple corresponding states was developed for spherically 
symmetric molecules, for which the reducing ratios are simple 
ratios of the critical parameters. The ECS model extends the 
method to other types of molecules by the introduction of the 
“shape factors” � and �. These shape factors are taken here to 
be functions of temperature and density. The shape factors are 
fitted to experimental data, typically vapor pressures and 
saturated liquid densities. The reference fluid is chosen to 
provide the best fit of the data and is usually chemically similar 
to the fluid of interest. 
 

B.1.2 Mixture model 

 
The thermodynamic properties of mixtures are calculated with a 
new model which was developed, in slightly different forms, 
independently by Tillner-Roth (1993) and Lemmon (1996, 
1999). It applies mixing rules to the Helmholtz energy of the 
mixture components: 
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This mixing formula may be applied directly to the Helmholtz 
equation of state. Application to the MBWR equation of state 
and the ideal gas heat capacity expression used with the 
MBWR and ECS models requires transformations: 
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where href and Sref are an arbitrary reference enthalpy and 
entropy at the reference state specified by Tref and �ref. 
 
The first summation in Eq. (9) represents the ideal solution; it 
consists of ideal gas (superscript id) and residual or real fluid 
(superscript r) terms for each of the pure fluids in the n 
component mixture. The xj ln xj terms arise from the entropy of 
mixing of ideal gases where xj is the mole fraction of component 
j. The double summation accounts for the “excess” free energy 
or “departure” from ideal solution. The Fpq are generalizing 
parameters which relate the behavior of one binary pair with 
another; Fpq multiplies the apq

excess

 term(s), which are empirical 
functions fitted to experimental binary mixture data. The ar and apq

excess
 functions in Eqs. (9 and 10) are not evaluated at the 

temperature and density of the mixture Tmix and �mix but, rather, 
at a reduced temperature and density � and �. These � and � 
are very much in the spirit of the conformal temperature and 
density of the ECS method and are a key innovation in this 
model. The mixing rules for the reducing parameters used in 
REFPROP are: 
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Equivalent forms which combine the kT,pq with the critical 
temperatures and the kV,pq with the critical densities are also 
used: 
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If only limited vapor-liquid equilibrium (VLE) data are available 
the apq

excess term is taken to be zero, and only the kT,pq and/or 
kV,pq parameters are fitted. The kT,pq parameter is most closely 
associated with bubble point pressures, and it is necessary to 
reproduce azeotropic behavior. The kV,pq parameter is 
associated with volume changes on mixing. (Ternary and higher 
order mixtures are modeled in terms of their constituent binary 
pairs: kT,pq = 1 and kV,pq = 1 for p = q.) If extensive data, 
including single-phase pressure-volume-temperature (PVT) and 
heat capacity data, are available, the apq

excess function can be 
determined. The Fpq parameter is used (either alone or in 
combination with kT,pq and kV,pq) to generalize the detailed 
mixture behavior described by the apq

excess function to other, 
similar, binary pairs. Lemmon (1996) has determined an apq

excess

 function based on data for 28 binary pairs of hydrocarbons, 
inorganics, and HFC’s. 



This “mixture Helmholtz-energy model” provides a number of 
advantages. By applying mixing rules to the Helmholtz energy 
of the mixture components, it allows the use of high-accuracy 
equations of state for the components, and the properties of the 
mixture will reduce exactly to the pure components as the 
composition approaches a mole fraction of unity. Different 
components in a mixture may be modeled with different forms; 
for example, a MBWR equation may be mixed with a Helmholtz 
equation of state. If the components are modeled with the ECS 
method, this mixture model allows the use of a different 
reference fluid for each component. The mixture is modeled in a 
fundamental way, and thus the departure function is generally a 
relatively small contribution to the total Helmholtz energy for 
most refrigerant mixtures. The great flexibility of the adjustable 
parameters in this model allows an accurate representation of a 
wide variety of mixtures, provided sufficient experimental data 
are available. 
 

B.2 Mixture Critical Parameters 

 
The reducing temperature and density T* and �* in the mixture 
Helmholtz energy model (Equations 12 – 15) are not the critical 
parameters for the mixture. The thermodynamic criteria for the 
critical loci of a binary mixture are 
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where g is the molar Gibbs free energy. The solution of these 
equations is iterative. Equations (16) and (17) have been solved for 
selected mixtures and the resulting critical loci have been fitted to 
empirical functions 
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where the ck are fitting parameters; they are stored in the mixture 
data file and are read upon calling the SETUP subroutine. An 
analogous function is used for the critical volume. Where these 
functions are not available, the critical loci are taken to be linear 
combinations of the pure-component critical parameters (i.e. the ck 
are all zero). 
 
For three-component and higher-order mixtures, the thermo-
dynamic criteria for the critical loci become increasingly complicated 
and time consuming to calculate. The number of possible mixture 
combinations also increases geometrically with the number of 
components. These factors make it impractical to store critical 
surfaces for such mixtures. Instead, REFPROP combines the 
constituent binary critical lines to approximate the critical 
parameters by 
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where the Tcrit

ij(z) is the binary critical locus for the binary pair (i,j) 
evaluated at a pseudo-composition z, based on the mixture 
composition x 
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Again, an analogous expression is used to find the critical volume. 
This method reduces correctly to the pure-component and binary-
pair limits, but is otherwise completely empirical. It yields critical 
parameters which are approximations, and they should be used with 
caution. 
 
The critical pressure is calculated from the mixture equation of state 
given the critical temperature and volume computed by the method 
outlined above. 
 
B.3 Surface Tension Model 

 
The surface tension of pure fluids is modeled as a polynomial in the 
dimensionless temperature � 
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This form is almost universally used in the literature to represent 
experimental surface tension data. Often, a summation consisting of 
a single term, with the exponent on � equal to approximately 1.26, is 
sufficient to represent surface tension. 



For mixtures, the model of Moldover and Rainwater (1988), as 
implemented by Holcomb (1997), is used. In this method, the pure 
fluids are assumed to be correlated with a function of the form 
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Although the mixture components may be modeled with a multi-term 
function, Equation (24) suffices over any limited range of 
temperature. An “effective” �0,i for each component is computed for 
the � of the mixture by using the appropriate pure-fluid model to 
calculate �i. The �0,i and the critical parameters for the pure 
components yield the Ci, a parameter stemming from the Moldover-
Rainwater vapor pressure relationship, 
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where R is the gas constant and 	 = 0.1. The effective C for the 
mixture is given by 
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where the zi is a pseudo-composition based on the fugacity fraction 
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The “effective” �0 for the mixture is then recovered by 
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and used in Equation (24) to compute the mixture surface tension. 
The critical temperature and pressure in Equation (28) are 
evaluated at a mixture composition having the same fugacity 
fraction at its critical point as the subject mixture at the input (T,x), 
i.e. the zi given by Equation (27). 
 
B.4 Transport Property Models 

 
The transport properties of viscosity and thermal conductivity are 
modeled with the residual concept. In this representation, the 
property 
 (representing either viscosity � or thermal conductivity �) 
is composed of several contributions: 
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id is a dilute gas term which is a function only of temperature, 
1 
accounts for the behavior at moderate densities, and 
r is a residual 
term accounting for the behavior at higher densities, including liquid 
densities. 
r is primarily a function of density, but it may also be a 
function of both temperature and density.  
 
The initial density dependence 
1 follows from the Rainwater-Friend 
theory (Friend and Rainwater 1984). Although this theory has been 
developed for both viscosity and thermal conductivity, it is usually 
applied only to viscosity. The thermal conductivity approaches 
infinity at the critical point, and this critical enhancement is 
expressed by 
c. This term is significant for thermal conductivity 
even quite far from the critical point. For viscosity, the enhancement 
is small except extremely close to the critical point and may be 
safely ignored in all practical applications. 



A variety of models for viscosity and thermal conductivity, based on 
the residual concept, have been implemented in the database. This 
section describes, in general terms, the models used. The 
references listed below or in the pure-fluid information screens in 
the interface give more details. 
 
B.4.1 Pure fluid viscosity models 

 
We have consolidated a variety of fluid-specific correlations for 
viscosity into a generalized form. The following equations, and 
also those for thermal conductivity, are written in terms of a 
reduced temperature � and density � where � = T/Tred and � = 
�/�red. The viscosity and thermal conductivity also involve 
reducing parameters �red and �red. These reducing parameters 
are used, for example, to convert units, and they may be 
different for the various terms in each model. The ak, bk, dk, tk, 
ek, lk, mk, and nk are adjustable parameters, and the C represent 
theoretically based constants.  
 
The dilute-gas contribution is expressed as a combination of the 
Chapman-Enskog term arising from kinetic theory and an 
empirical term: 
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where M is the molecular weight, � is the Lennard-Jones size 
parameter, and we use the empirical function of Bich et al. 
(1987) to represent the reduced effective collision cross section 
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where T* = Tk/� and �/k is the Lennard-Jones energy 
parameter. 
 
The initial density dependence is given by Friend and Rainwater 
(1984): 
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The residual term is expressed as a combination of several 
empirical terms 
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where the close-packed density �0 is given by 
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Equations 30–34 represent, with minor transformations, the 
viscosity formulations of Laesecke (1997) for R134a, Tanaka 
(1995) for R123, Fenghour et al. (1995) for ammonia, and 
Krauss et al. (1996) for R152a, among others. (Many of the 
terms are zero for various formulations.) For some of the 
hydrocarbons, we adopt the fluid-specific formulations of 
Younglove and Ely (1987). See their paper for a description of 
this model. 



B.4.2 Pure fluid thermal conductivity models 

 
The primary model for thermal conductivity represents the 
dilute-gas and residual terms as rational polynomials 
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Equations 35 and 36 consolidate into a general form, a variety 
of fluid-specific correlations, including those of Perkins et al. 
(1998) for R134a, Krauss et al. (1996) for R152a, and Laesecke 
et al. (1996) for R123. 
 
The critical enhancement for thermal conductivity is represented 
using two models. The first is an empirical form used by 
Laesecke et al. (1996): 
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The second critical enhancement model is a theoretical form 
used by Perkins et al. (1998) for R134a, Krauss et al. (1996) for 
R152a, and Vesovic et al. (1990) for carbon dioxide. We adopt 
the “simplified” form of this model, as presented by Olchowy 
and Sengers (1989); it involves the viscosity � and the isochoric 
and isobaric heat capacities Cv and Cp 
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The correlation length � is given by 
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In Equations 38–42, R0, �, and � are theoretically based 
constants; qD, �0, and � are fluid-specific (fitted) terms; Tref is an 
arbitrary reference temperature which is significantly above the 
critical temperature; and k is Boltzman’s constant. 



For some of the hydrocarbons, we adopt the fluid-specific 
formulations (including dilute-gas, residual, and critical-
enhancement terms) of Younglove and Ely (1987). See their 
paper for a description of this model. 
 

B.4.3 Extended corresponding states model for pure fluids 

 
For those pure fluids which do not have wide-ranging, fluid-
specific correlations available, REFPROP uses the extended 
corresponding states (ECS) models of Klein et al. (1997) and 
McLinden and Klein (1998) for viscosity and thermal 
conductivity, respectively. These models are modifications to 
the Huber and Ely (1992) and Huber et al. (1992) models used 
in previous versions of REFPROP. 
 
The dilute-gas contributions are given by kinetic theory: 
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where we use the empirical function of Neufeld et al. (1972) for 
the collision integral 
(2,2), and the fint is fitted as a linear function 
of temperature (if sufficient data are available) or set to the 
constant 1.32x10–3. 
 
As in the ECS model for the thermodynamic properties, the 
residual parts of the transport properties are based on those of 
a reference fluid (R134a for the refrigerants in REFPROP): 
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The conformal temperature T0 and density �0 are found by 
solving Equations 5 and 6; these values are then used to find 
the reducing ratios f and h by Equations 7 and 8. The conformal 
densities at which the reference fluid formulations are evaluated 
are modified from those in the thermodynamic ECS model by 
additional viscosity and thermal c ape factors onductivity sh
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where � and � are empirical polynomials in the reduced 
density. 
 
The critical enhancement for thermal conductivity is calculated 
using the method of Olchowy and Sengers (1989). 
 

B.4.4 Extended corresponding states model for mixtures 

 
The transport properties of mixtures are modeled with the 
extended corresponding states (ECS) models of Klein et al. 
(1997) and McLinden and Klein (1998) for viscosity and thermal 
conductivity, respectively. These models are modifications to 
the Huber and Ely (1992) and Huber et al. (1992) models used 
in previous versions of REFPROP. 



Mixture transport properties are composed of the same terms 
present for the pure fluids. The dilute-gas contribution is 
calculated by matrix analogs of Equations 43 and 44; see, for 
example, Hirschfelder et al. (1967). All quantities in the dilute-
gas terms are evaluated at the temperature of the mixture, 
rather than some conformal temperature. 
 
The residual contribution is found by combining the properties of 
the reference fluid, evaluated at the conformal conditions given 
by the solution of: 
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with the viscosity or thermal conductivity of each of the 
components, evaluated at the conformal conditions given by 
 

� � � �j
r

j j mix
rT T, ,c h a f�

 
(51) 

and 
Z T Z T xj j j mix, ,� �c h a f�

 
(52) 

 
where the subscripts 0 and j refer to the reference fluid and 
component j in the mixture, respectively. The reducing 
parameters are then defined by 
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The ratio of molar masses (M0/M)

1/2
 in equations 45 and 46 is 

replaced by 
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where 
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Again, the 
 represents either viscosity or thermal conductivity. 
Including the pure component values in this way ensures that 
the properties of a mixture reduce to the pure fluid values as the 
composition approaches 1. 
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